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Abstract. A BCH formula for groups having faithful matrix representations is derived, by 
a decomposition of the general group element exp(M) into factors, each factor being an 
expnenl id  involving the infinittsimal generators of the group. This is a generalization of 
iiuf entiicr for 

1. Introduction 

In a recent letter (Raghunathan et a1 1989) we presented 3 Baker-Campbell-Hausdo& 
(BcHj-type disentanelement relation for SUQ), This relation consists in expressing the 
group element exp(M), M being some linear combination of the SU(3) generators, 
as a product of exponential factors in the form 
exp( M ) = exp( a32E32) exp( m 3 ,  E l , )  exp( a 2 I E2 ,) exp( 4 HI 1 exp( d,Hd 

x exp(a , lEd  exp(a,&,) exp(a&z3). (1.1) 
c --" "-I - F I L - - -  ----A:-.. -..A +k.a- ---:%.:I-+:-.. ....a..-...-e F-- P l r l ? \  ..-.I U .>r,r ng 0,- a ' 5 ,  "L L I . I F C  *.Icn,,u,, *,,U L I I I V T  aIIIIIIIIIIIIIw,, upG,'lLu,a ,U, *"\_I, a,," rIi 

are its two diagonal generators. This factorization of the group element is particularly 
useful in the study of SU(3) coherent states. 

In this paper we generalize the above result and present the complete factorization 
of exp( M) for any square matrix M. Our result can be regarded as a result in matrix 
theory. It acquires added importance when viewed from the point of group theory. If 
we consider M as a given linear combination of the generators of a group in some 
faithful n x n matrix representation, then the result we have obtained is a BCH formula 
(Gilmore 1974a, b) for the group. 

Consider exp(AM), where M is a square matrix of dimension n and A is a parameter. 
M can always be written as 

where the basis vectors E, are n x n matrices whose elements are given by 
M = m,E, (1.2) 

(E,) , ,  Si& (1.3) 
We seek 3 generalization of the relation (1.1)) in the form 
exp(hM)=[exp(ol,,-,E,,-,) exp(n,,-~E,.-d.. . exp(a3&,,) 

xexp(a , ,Ed  e~p(or,~E,~)l[exp(a..E.,). . . ex~f%%)l  

x[exp(a , ,E ,J  exp(o,,E,,) exp(al,Ezl). . .e~p(..-~.E,-,.)l (1.4) 
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where a, are coefficients. On the RHS of (1.4) there are n(n-1)/2 operators E, with 
i > j in the first square bracket, n diagonal operators in the middle square bracket and 
n(n - l)/Z operators Eq with i < j in the last square bracket. The main objective of 
the present work is to establish the result (1.4) by determining the ags as functions of 
the mus. 

We adopt a three-step procedure. In section 2 we express exp(AM) as a polynomial 
in M whose coefficients are functions of the m p .  Let G = G(M)  he the matrix 
polynomial so obtained. Turning to the RHS of (1.4), we note that it has the form of 
a product LDU where L is a lower triangular matrix, D is a diagonal matrix and U 
is an upper triangular matrix corresponding to the first, middle and last square brackets, 
respectively. In section 3 the elements of L, D and U are determined in terms of the 
elements of G. This LDU decomposition is unique. In the last stage, the a.,s, which 
are to be determined, are found in terms of the elements of L, D and U, and thus in 
terms of the elements of G. This is carried out in section 4. 

The scope of the paper is limited to the derivation of the main result. Its application 
to SU(4) and other groups in the context of coherent states will he dealt with separately. 

2. Reduction of exp(AM) to a matrix polynomial 

In this section we consider the LHS of (1.4) and reduce it to a matrix polynomial. 
Let M be a square matrix of dimension n satisfying the minimal equation 

N-l  

k = O  
M N =  2 akMk N s n .  

By definition, 
m 

exp(AM)= A’M’Ij!. 
;=o 

By virtue of (2.1), it is clear that M J  for every j could be expressed as 
N-I 

M I =  1 A,,*M~ (2.3) 
k = O  

where 
of degree N - 1 in M. Substituting (2.3) in (2.2), we have 

are functions of a*. Therefore, exp(AM) itself can be written as a polynomial 

N-l 

= 1 B,M’ 
k = O  

In this section we obtain explicit expressions for Bks as functions of the a,s and A. It 
turns out, as we shall show, that Bo,  B,, . . , , E,.+> can all be evaluated once EN-,  is 
known. EN-, itself can be elegantly determined by a Laplace transform technique. 

First, we note that (2.1) requires that 
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To determine Aj,k f o r j >  N, we proceed as follows. Multiplying (2.3) by M we notice 
that 

N - I  

k=o  
1 A,,,,*M*= MI+' 

N- l  

k = o  
= 1 A,,~M'+' 

N-2 

= 1 Aj,kMkf '+Aj ,N_IMN 

= 2 Aj,kMkt'+A,,N-l 1 akMk 

k = o  

N-2 N - l  

k - 0  k = O  
(2.6) 

where in the last step we have used (2.1). Comparing coefficients of powers of M in 
(2.6), we get the following recurrence relation: 

Ai+,,,= anAj.N-1 

Aj+i,k = Aj,k-i+ akAj.N-1 
(2.7) 

Successively setting k = N - 1,  N - 2, . . . , 1 and adding the resulting expressions we 
get a recurrence relation in which the second index has the fixed value N - 1. For 
simplicity, taking 

(2.8) 

k=l,. . . , N-i .  

A . = A .  
I AN-I  

this recurrence relation is 
N-I 

A,+,= 1 aN-k-IAj-k 
k - 0  

(2 .90)  

This is an ( N C 1 )  term recurrence relation with initial conditions 

A.=S.  J J.N-I j s N - 1  (2 .9b)  
which is a consequence of (2.5). For our purposes it is not necessary to solve (2.9). It 
suffices to evaluate the quantity S ( p )  defined by 

m 

S ( p )  E p 1 Ajpj. 
j = n  

For we see from (2.4) that 
m 0 

BN-, = (AJ/j!)Aj,N-, =2-'2 1 (AJ/j!)Aj 
j = n  i = 0  

(2.10) 

(2.11) 

is the Laplace transform. To compute S(p) ,  multiply (2.9a) by pi+' and sum from 
j = O  to m. Because of (2.9b), the LHS becomes S(p)p- ' ,  while the RHS reduces to 

F N - ' + ( a N - , + p q - - 2 + .  . +pN-'ao)S(p)p-' 
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the first term being a consequence of (2.96). From this the unknown function S(l/s) 
is readily found to be 

aJi .  (2.12) s ( l / s ) = ( s N - a N - , s  N - l  - a N - 2 s N - 2 - .  . . -  
If now the inverse Laplace transform of (2.12) is taken, EN-, can be obtained. 

Let sl, s2,.  . . , sN be the zeros of S-’(l/s). Then 

S(l/s) =n (S-s;)-l. (2.13) 

Assuming the zeros to be distinct, it is easy to show that 

‘. 
S(l/s)= 1 c,(s-si)-l c,= n (si-sj)-I. (2.14) 

When S-’ has multiple zeros, this simple resolution into partial fractions requires 
modification, which we discuss in the appendix. For the case of simple zeros, the 
inverse transform of S is easily found. We therefore have 

i = l  j t i  

.. 
E N - , = 2 - ’ S ( I / s ) = ~  C, exp(Asi). (2.15) 

The remaining Ejs are determined as follows. Differentiating Ek (cf (2.4)) with respect 
to A and making use of (2.7), we deduce that 

I 

dEk/dA = -k akEN_, .  (2.16) 

From this it is clear that E N - 2  can be expressed in terms of E N - ,  and its derivative. 
By repeatedly doing this, one is led to the solution 

= (~N-k-1 -  a N - ,  DN-*-’ - aN_2DN-k-’- .  . . - ak+l)BN-l (2.17) 

where D = d/dA, and k = 0, 1, . . . , N - 2. With this we have evaluated all the coefficients 
Ek required for expressing exp(A\M) as a matrix polynomial. 

Relation (2.16) is valid irrespective of whether the minimal polynomial has distinct 
zeros or not. Therefore, the only change to be made in (2.17) for the case of multiple 
zeros is to use the expression for E N - ,  given in the appendix, instead of (2.15). It is 
remarkable that exp(AM) can be expressed so simply in terms of the coefficients of 
the minimal polynomial of M and one scalar function of the eigenvalues, E N - , .  

It may be noted that when the si are distinct, our result is equivalent to the well 
known spectral resolution (Jordan 1969, Halmos 1958) 

exp(AM) =I exp(As;)P; 

where the P, are the projection operators given by 

P,=  n ( s ; - s j ) - ~ ( ~ - s j ) .  
j + i  

When the minimal equation admits multiple roots, it is not possible to express exp(AM) 
purely in terms of projection operators. There will occur in addition certain nilpotent 
operators (Gantmacher 1959). We believe that our method for expressing exp(A\M) as 
a matrix polynomial is of interest for the reason that it is elementary and gives the 
result directly in powers of M. 



A(11,22 ,..., k - 1  k - l , r s ) =  

A ( l l , Z Z , . . . , k k )  
A(11,22,. . . , k - 1  k -  1) dk = k = 2 , ,  . . , n 

G I ,  GIZ ' . .  0 i k - i  GI ,  
Gzi Gz2 . ' .  G2k-i Gzc 

(3.4) 
Gk-1 k-1 4 - 1 ,  

Grk-1 Gv 

. . .  
Gk-l I 

. . .  G, 1 

A ( l l , 2 2  ,..., k-1  k -1 ,k j )  
U, = j >  k 

A ( l l , 2 2 , .  . . , kk) (3.5) 

j > k  A ( l l , 2 2  ,..., k - 1  k -1 , jk )  1. = 
I* A ( l l , 2 2 , .  . ., kk) 
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4. Determination of the ag 

The final task is to express the 0,s in terms of elements of L, D and U. Recalling that 

L=exp(a..-,E..-,) ex~(a..-~E..-~).. . ex~(a , ,E ,~)  exp(a,,E,,) exp(u2,E2,) (4.1) 
where E, are the matrices defined by (1.3). satisfying the relation 

E,E,, = S,,E,. (4.2) 
Hence, every exponential on the R H S  of (4.1) reduces to a lower triangular matrix of 
the form (I+ a&) (no summation over the indices). Since the product of any number 
of lower triangular matrices is a lower triangular matrix, L is a lower triangular matrix, 
as supposed, whose diagonal elements are all unity. 

Let us now define a lower triangular matrix aL whose elements are the a, of (4.1) 
and whose diagonal elements are all zero: 

0 0 " '  

(4.3) 

Clearly, a;=O. Multiplying out the R H S  of (4.1) and collecting terms, we find that 
(4.1) can be written in a compact form as 

Using the fact that a;=O, this equation can be inverted to obtain aL in terms of L 
explicitly: 

L = n + a L + a : + , '  .+a;-', (4.4) 

"-1 

a L = - x  (U-L)'. (4.5) 
, = I  

This relation determines all the a,s with i > j  in terms of the elements of L. 

upper triangular matrix with elements 
To find the ( I ~ S  for i < j ,  one proceeds in a similar manner. If we denote by au the 

(au ) ,  = a, i<j 
i>j (4.6) (%),=a 

then the upper triangular matrix U defined by 
U=exp(a,,E12) ... exp(u.-,.E.-,.) 

is expressible as 

which gives 
U=n+a,+a:+. . ,+a";' 

- - I  
a,, = - 2 (n- U)'. 

r= ,  
(4.9) 

The diagonal elements ai! in (1.5) are easily found in terms of the elements of 
D =exp(a, ,E,,)  e ~ p ( a ~ ~ E , , ) .  . . exp(a..E..) (4.10) 

and 
(4.11) 

This completes the determination of all the uus in terms of elements of G defined in 
(3.1). 

aii = (In D)${ = In d,.  
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5. Discussion 

We have shown that the exponential of an arbitrary n x n matrix can be factorized 
and written as a product of exponentials involving the natural basis, E,, for the set of 
n x n matrices. We have introduced the Laplace transform technique as a tool to reduce 
the exponential of a matrix to a matrix polynomial. This technique is general enough 
to accommodate both diagonalizable and non-diagonalizable matrices, For diagonaliz- 
able matrices, our results in section 2 are equivalent to the spectral decomposition of 
functions of matrices. For the case of non-diagonalizable matrices the spectral 
decomposition involves both projection operators and associated nilpotent operators. 
The Laplace transform method determines the coefficient B, directly without having 
to deal with the projection and nilpotent operators separately. 

The disentanglement relation derived by us should prove useful as a BCH formula 
for SU(n) because a,s determined as functions of M in one faithful representation 
are valid in all faithful representations. Our result is of particular interest in the study 
of SU(n) coherent states. Its application to physically interesting groups such as SU(4), 
SU(6), etc., will be considered separately. 
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Appendix 

Let (si, ai), i = 1, . . . , r =s N, denote the distinct roots and their multiplicities of the 
polynomial equation 

o,=O N -aN-lSN-'-aN--ZSN--2-. . .- 

and consider the expression 

F ( s ) =  n 1/(s-si)*,. 
i -1  

The partial fraction resolution of F is given by 
. PI 

F ( s ) =  C,,j/(s-s;)' 
i - 1  j=,  

where the coefficients Ci,j are given by 

Ci,j = [ l / ( a j  -j)!][(d/ds)"l'(F(s)(s - SO"')],=, 
Consequently, 9 - ' F ( s )  is easily found to be 

r a< 

I Cp-'F!s) = c, c, cj,j cxp(.iA).x?-'/!;-?y= r_ C;(A) .xp(x;A) 
i - ,  j-l i - 1  

where 
=, 

j - l  
Cj(A)= Cj,jA'-'/(j-l)! 
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Hence 

EN-, = &A\)  exp(siA\). 
i = 1  

This replaces (2.15) for the case of multiple zeros of S(l/s). 
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